Well posedness of a linearized fractional derivative fluid model
نویسندگان
چکیده
منابع مشابه
Well-posedness for the Linearized Motion of the Free Surface of a Compressible Fluid
(1.2) (∂t + V ∂k)ρ+ ρdivV = 0, divV = ∂kV k in D where the velocity v = (v1, ..., vn), the density ρ and the domain D ⊂ [0, T ]×Rn are to be determined. Here the pressure p = p(ρ) is assumed to be a given function of the density which is strictly increasing at the boundary where the density is assume to be constant. Furthermore V k = δvi = vk and we have used the summation convention that repea...
متن کاملWell-posedness of a quasilinear hyperbolic fluid model
We replace a Fourier type law by a Cattaneo type law in the derivation of the fundamental equations of fluid mechanics. This leads to hyperbolicly perturbed quasilinear Navier-Stokes equations. For this problem the standard approach by means of quasilinear symmetric hyperbolic systems seems to fail by the fact that finite propagation speed might not be expected. Therefore a somewhat different a...
متن کاملOn well-posedness for a free boundary fluid-structure model
Related Articles Generalized extended Navier-Stokes theory: Correlations in molecular fluids with intrinsic angular momentum J. Chem. Phys. 138, 034503 (2013) Velocity relaxation of an ellipsoid immersed in a viscous incompressible fluid Phys. Fluids 25, 013101 (2013) Remarks on the regularity criteria of generalized MHD and Navier-Stokes systems J. Math. Phys. 54, 011502 (2013) Germano identit...
متن کاملWell-Posedness for a One-Dimensional Fluid-Particle Interaction Model
The fluid-particle interaction model introduced by the three last authors in [J. Differential Equations, 245 (2008), pp. 3503–3544] is the object of our study. This system consists of the Burgers equation with a singular source term (term that models the interaction via a drag force with a moving point particle) and of an ODE for the particle path. The notion of entropy solution for the singula...
متن کاملGlobal Well-posedness and Scattering for Derivative Schrödinger Equation
In this paper we mainly study the Cauchy problem for the derivative nonlinear Schrödinger equation in d-dimension (d ≥ 2). We obtain some global well-posedness results with small initial data. The crucial ingredients are L e , L ∞,2 e type estimates, and inhomogeneous local smoothing estimate (L e estimate). As a by-product, the scattering results with small initial data are also obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2011
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2011.02.047